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Abstract
Since the SouthAsia SummerMonsoon is themain source of water for a densely cultivated and
climate-sensitive region, its predictability has long been the target of research. This work estimates the
predictability horizon ofmonsoon precipitation amount by systematically comparing statistical
forecastsmade using information fromdifferent lead times before themonsoon start. Linear and
nonlinear predictionmethods are considered that use the leadingmodes of the global sea surface
temperature field to forecastmonsoon-season (June–September) total precipitation on a 0.5° grid
over SouthAsia, where eachmethod is trained on data from1901 to 1996 and evaluated on data from
1997 to 2017. Forecasts were found to outperform a climatology baseline up to at least 1 year ahead,
with a nonlinearmethod (random forest) on average outperforming linear regressionwith group
lasso, althoughwith greater variability in skill across locations and years. Forecast performance
measures (fractional reduction in rootmean square error and information skill score) decreasedwith
increasing lead time following exponential decay timescales of 5–12months, depending on the
performancemeasure and forecastmethod. Even at lead times of several years, therewas some forecast
skill compared to climatology, as a result of the impact of long-term climate change onmonsoon
precipitation. The results suggest thatmonsoon prediction is possible with longer lead times than
generally attempted now.

1. Introduction

Densely populated South Asia, a leading agricultural
area, derives most of its water supply from intense
summer rainfall (figure 1). The rainy season is closely
linked to the South Asia Summer Monsoon (SASM),
in which moisture flows to the Indian subcontinent
from the Arabian Sea and the Bay of Bengal, driven by
the land-sea temperature contrast [1]. This is part of a
summer monsoon zone that extends into East Asia
and the northwest Tropical Pacific [2, 3].

Interannual variation in the amount and spatial
distribution of summer precipitation in the SASM
monsoon zone is considerable, with severe con-
sequences for agricultural productivity and human
well-being [4]. Prediction of monsoon precipitation
has therefore been pursued for over a century, using
predictors such as snow cover and air pressure patterns

[5]. Over the 20th Century, the challenge of SASM
precipitation prediction led to advances in statistical
methods for multivariate time series analysis, and the
discovery of large-scale interannual oscillation patterns
including the El Niño Southern Oscillation (ENSO),
North Atlantic Oscillation, North Pacific Oscillation,
and Equatorial IndianOceanOscillation [6].

[7] provide a historical review of SASM seasonal
prediction methods. Recent work on statistical
approaches to SASM prediction includes an approach
based on neural networks, with only monsoon pre-
cipitation from previous years as input [8]; seasonal
prediction of regional precipitation based on sea sur-
face temperature (SST) and air pressure tendencies [9];
one-month-ahead prediction based on ENSO and an
Equatorial Indian Ocean oscillation index [10]; and
prediction using springtime air pressure patterns over
the Pacific [11]. Applications of atmosphere-ocean
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dynamical model simulations to monsoon prediction
also continue to be developed, with one study finding
higher prediction skill of Indian summer monsoon
rainfall at 3 month lead time despite poorer simula-
tion of ENSO and Indian Ocean Dipole compared to
shorter lead times [12], and another study showing a
positive impact of higher model resolution on predic-
tion skill for all-India summer monsoon rainfall [13].
However, despite enormous advances in dynamical
simulation of climate in the past few decades, statis-
tical methods remain competitive for forecasting at
the seasonal timescale [14].

In recent years, improved statistical techniques have
been developed and applied for predictive modeling
where there are numerous possible predictors [14].
Such techniques may be linear or nonlinear in the
predictor values. While many statistical models have
been constructed to attempt to predict SASMprecipita-
tion, there are few systematic comparisons of predictive
ability across forecast lead times. The main goal of the
current study is to estimate the timehorizon forpredict-
ability of the SASMprecipitation field, using both linear
and nonlinear state-of-the-art statistical methods. The
basis for the predictions is taken to be the global SST
field. SST reflects upper ocean heat content, which is
recognized as the leading (though not only) contributor
to weather and climate predictability on seasonal time-
scales [15]. Predictions are made for precipitation on a
grid over South Asia, which may be more useful than
predictions of single quantities such as regionwide
precipitation indices or precipitation at single sites, as
carried out bymanyof the previous studies.

2.Methods

2.1.Monsoon precipitation data
Spatially-resolved yearly accumulation of monsoon-
season (June–September) precipitation over the South

Asia region (5 to 36° N, 60 to 98° E; figure 1) was
considered as the prediction target.Monthly precipita-
tion gridded at 0.5° resolution for 1901–2017 was
obtained from the publicly available University of East
Anglia CRU-TS product (version 4.01), which inter-
polates observations from meteorological stations
[16]. This product has been extensively intercompared
with other products and observation datasets, with
generally favorable results [17, 18]. Aggregated over
India, the monsoon-season precipitation from this
product compared well with the All-India Monsoon
Rainfall Index, which is based on 36 representative
stations [19], as obtained from the LDEO/IRI Climate
Data Library [20]; the correlation coefficient between
the two records over their period of overlap
(1901–1998) was 0.933. There were 2215 grid cells
with precipitation data over South Asia and an average
of at least 100 mm per year in monsoon-season
precipitation, covering 6.2 million square km
(figure 1). Over most of this domain, the monsoon
season accounted for more than half of annual
precipitation, underscoring the importance of predict-
ing it. The precipitation datawere divided into training
and test subsets: data from 1901 to 1996 were used for
training monsoon prediction models, while
1997–2017 data were used for evaluating model
performance.

2.2. Predictor data
Monthly global SST fields were obtained from the
HadleyCentre’sHadISST product (version 1.1), which
provides 1° spatial resolution since 1870 [21]. This
product has been used extensively for purposes such as
assessing teleconnections with precipitation and
temperature extremes [22] and evaluating predictions
of SST [23]. Grid cells with sea ice in this product were
filled in with an SST of −1.8° C. Then, singular value
decomposition (SVD) [24, 25] was performed on SST

Figure 1.Meanmonsoon-season (June–September)precipitation (mm) for SouthAsia, 1901–2016. Land grid cells where this was
under 100 mmare left unshaded andwere not included in the study domain.
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from the training period, with grid cells weighted by
their surface areas, to find dominant modes of inter-
annual SST variability. Approximately 40 of the
leading SVD singular vectors (with the exact number
depending on the lead time selected), representing at
least 90% of the interannual SST variance, were
retained as the potential predictors of monsoon
precipitation. Lead times from 0 to 48 months were
considered for forecasting. A lead time of 0 months,
for example, means that the June–September precipi-
tation was forecast using June SST; for a lead time of
6 months, the previous December’s SST was used for
prediction.

2.3. Predictionmodels
2.3.1. Linear model: least absolute shrinkage and
selection operator (lasso)
Given training data onmonsoon precipitation anoma-
lies as an m by n matrix Y, where m=96 is the
number of years of training data and n=2215 the
number of locations, and predictor values for each
year as an m by k matrix X, where k≈40 is the
number of predictors (SST modes), a linear model
would take the form Y∼XB (assuming that the
columns of X and Y have had their means over the
training period subtracted so that no explicit intercept
term is needed).

In this problem, the dimension k of the predictor
space is relatively large compared to the number of
training instancesm.With no constraints on the k by n
coefficient matrix B, its estimation, for example by
least squares, is unduly sensitive to noise in the data
and does not enable accurate prediction of
precipitation.

The lasso tends to be effective for prediction in a
context where, out of the many possible predictors, a
small to moderate number are moderately associated
with the predicand [26]. Specifically, the group-lasso
variant [27, 28] is adopted, which is suitable for multi-
variate regression. In thismethod,B is chosen tomini-
mize the cost function
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where the first term is proportional to the residual sum
of squares and the second, penalty, term is propor-
tional to the sum of the vector two-norms of the rows
of B. As the non-negative regularization parameter λ
grows, the optimal B has fewer rows with non-zero
elements, corresponding to fewer predictors included
in the regression model. For large enough λ, no
predictors are kept (B has only zeros) and the
prediction of the regressionmodel is therefore equal to
themean of the training-period predicand values.

The value of λ was chosen by cross validation
[29, 30] tominimize the predictionmean square error.
In the cross validation, the training dataset was divided
into six equal-length segments, and each sixth was

successively predicted using the remaining segments
under different values of λ. Given λ, B was found by
minimizing the cost function (1) using the coordinate
descent method, as implemented in the R glmnet
package [31–34].

Initial experimentation compared the lasso
approach to several others: reduced-rank regression,
where the matrix B is constrained to have some low
rank r [35]; ridge regression [36], where the penalty
term in the cost function is proportional to B F∣∣ ∣∣ and
the coefficients of B are therefore shrunk toward zero
but not specifically by row [37, 38]; or a combination
of reduced rank with the ridge regression penalty [39].
However, for these approaches, cross-validation
usually selected regularization parameters r, λ that
result in B being all zeros and therefore not yielding a
useful prediction. The lasso penalty was therefore cho-
sen as apparently the most effective in this context.
The lasso method has previously been applied, for
example, to predict land climate using ocean climate
quantities [40], study the influence of weather on fruit
yields [41], and reconstruct temperature fields from
proxy data [42].

2.3.2. Nonlinearmodel: random forest (RF)
The nonlinear model considered was regression RF.
This generates an ensemble (forest) of regression trees
to predict the training data points using the SST
modes, latitude, longitude, year, and mean precipita-
tion for the location as predictors. The predicted value
is then the mean across the regression tree ensemble
[43]. RF is robust to the presence of correlated or
unhelpful predictors [44] and has been successfully
used for many earth science applications, generally
comparing favorably with linear and other nonlinear
methods [45–52]. The implementation in the R
randomForest package [53] was used. All the
parameter values were kept at the package default
except for the number of points randomly sampled
and used to fit each tree, which was reduced to 20% of
the total number mn, or about 40 000, to limit
computation time.

2.3.3. Baselinemodel: climatology
Forecast method skill—here, the skill of the linear and
nonlinearmodels, which both use the same SSTmodes
as predictors—is measured relative to some ‘no-skill’
baseline forecast [54]. The baseline model here was
one where the forecast for each grid point and year in
the test period is simply the average precipitation for
that point over the training period (climatology).

2.4. Prediction skillmeasures and visualization of
forecast performance
2.4.1. Reduction in rootmean square error (RMSE)
Each of the models considered was used to generate
predictions for the test monsoon-season precipitation
data (precipitation at 2215 grid points for each of
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21 years). The deterministic skill measure adopted was
based on the RMSE between the predicted and actual
values:
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where Fi j, is the predicted precipitation for each test
year and grid cell, Pi j, is the actual precipitation from
CRU-TS, aj is the grid-cell area, and m 21¢ = is the
number of years in the test period. This was compared
to the RMSE of the baseline climatology forecast. The
fractional reduction in RMSE (rRMSE) for the linear
or nonlinear model compared to climatology was
computed as

rRMSE 1
RMSE

RMSE
, 3for

clim

= - ( )

where RMSEfor is the RMSE calculated for the linear or
nonlinear model and RMSEclim that for the
climatology.

Confidence intervals for rRMSE were computed
using the t test for the time series of forecast-climatology
differences in mean square error over each of the 21 test
years. The standard assumptions for the t test are that the
time series tested is homoskedastic and has no auto-
correlation. To assess the impacts of autocorrelation in
the time series on the confidence intervals, confidence
intervals were also calculated using the Newey–West
method, which adjusts the t test standard error based on
estimators for the time series heteroskedasticity and
autocorrelation [55–57].

2.4.2. Probabilistic prediction and information skill
score (ISS)
The point predictions generated from linear or non-
linear regression models were also converted to
probabilistic predictions that are often of greater
usefulness in decisionmaking. Similar to current
operational forecasts such as those from the South
Asian Climate Outlook Forum [58], the probabilities
generated were those for placing in each tercile of
precipitation from the training period. The point
predictions were converted to per-tercile probabilities
that minimized the Kullback–Leibler divergence from
an equal-chances climatology probability distribution
while having the mean indicated by the point predic-
tion (a ‘maximum entropy’ approach [59, 60]), but
with the tercile probabilities all constrained to the
range 25%�p�50%.

The probabilistic skill measure adopted was mean
ISS relative to an equal-chances climatology probabil-
istic forecast (of 1/3 per tercile). The ISS is based on
the negative log likelihood of the actual outcome ter-
cile under the forecast, normalized so that the clima-
tology forecast has ISS of 0 and a perfect forecast that
always predicts the observed tercile would have ISS of

1 [54]. The t test was used to compute confidence
intervals for ISS analogous to those for rRMSE.

2.4.3. Skill as a function of lead time
The skill scores rRMSE and ISS were thus found for
each prediction method (linear and nonlinear) and
lead time (0–48 months). An exponential decay
function was fitted to the rRMSE or ISS versus lead
time relationship using least squares to generate a
smoothed representation of the expected relationship
of lead time to prediction skill and help estimate the
predictability horizon for the monsoon precipitation.
For each prediction method, the form of the function
was

S t a be , 4t= + t-( ) ( )

where S(t) is the smoothed prediction skill (rRMSE or
ISS), a is the estimated skill at long lead times (t? τ),
a+b is the estimated skill at zero lead time, and τ is a
decay timescale for the prediction skill.

2.4.4. Predictive SSTmodes and forecast skill mapping
For linear regression, correlating specific SST patterns
with precipitation patterns is straightforward. Thefirst
singular vectors from singular-value decomposition of
the coefficient matrix B from the lasso regression at 0
and 12 month lead times were mapped to show the
SST mode associated with the most monsoon pre-
cipitation variability at those lead times and the
corresponding precipitation response spatial pattern.
For nonlinear regression methods such as RF, depict-
ing the specific SST configurations correlated with
precipitation responses is more difficult, but the
rRMSE skill score for each grid point was mapped for
the nonlinear regression as well as for the linear
regression to show where each method has predictive
skill. The skill scores were based on all lead times from
0 to 12 months, to reduce fluctuations due to small
sample size, and pointwise confidence intervals for
them were calculated using the t test for the difference
of mean square error from that of a climatology
forecast across years and lead times.

2.5. Sensitivity analyses
In order to better understand the behavior of the
prediction methods, a number of variants were tested
for which prediction models were fitted and skill
scores computed. Details and results from these
analyses are given in supplementarymaterial.

3. Results

3.1. Skill scores by lead time
The nonlinear SST-based forecast was able to reduce
RMSE relative to climatology at all lead times from 0
to 17 months, by an average of 1.9% (figure 2). The
fitted exponential decay curve, which smooths out
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fluctuations in the rRMSE between adjacent lead times
due to sampling variability, gave an estimate of the
expected rRMSE at zero lead as 3.2%, declining with
an e-folding timescale of 9 months to 1.5% at
12 month lead and 0.7% at 48 month lead (figure 2).
The linear SST-based forecast outperformed climatol-
ogy by an average of 1.2% over 0 to 17 month lead
times, declining with an e-folding timescale of
6 months from 2.3% at zero lag to 0.9% at 12 month
lead and 0.6% at 48months.

Although the linear method produced forecasts
with on average somewhat less rRMSE than the non-
linear method, its results fluctuated less than the non-
linear one between adjacent leads, and showed
narrower confidence intervals based on between-year
variability in performance (figure 2(b)). At some lead
times, particularly the longer ones, rRMSE for the lin-
ear method was exactly zero because cross-validation
produced a large enough λ (equation (1)) that the
coefficient matrix B had all zeros and the regression
estimate was therefore simply the training-period
mean precipitation, which was also the climatology
forecast. TheNewey–West confidence intervals for the
linear regression rRMSE were almost the same as with
the standard t test, suggesting little year-to-year auto-
correlation of the skill. For the nonlinear regression,
the Newey–West confidence intervals were often nar-
rower than the standard ones, implying some negative
year-to-year autocorrelation and resulting in more
lead times for which the rRMSE 95% confidence inter-
val was all above zero and the skill score therefore

significantly greater than zero (at the p=0.025 level,
using a one-tailed t test) (figure 2(b)).

The probabilistic tercile forecasts for grid-scale
monsoon-season precipitation also showed skill, as
measured by ISS relative to climatology. Forecasts
derived from the nonlinear method showed positive
ISS for all leads up to 11 months (figure 3). Mean ISS
over those leads was smaller for the linear method
(0.7%) than for the nonlinear one (1.4%). The expo-
nential fits to ISS as a function of lag were, for the non-
linear method, 2.1% at zero lead, falling with a
12 month decay timescale to 0.6% at 12 month lead
and −0.3% at 48 months, and, for the linear method,
1.3% at zero lead, falling with a 5 month timescale to
0.4% at 12 month lead and 0.3% at 48 months.
Although the nonlinear method showed higher ISS
than the linear one for the shorter leads of up to a year,
the linear method maintained a more consistently
positive ISS at longer lead times, whereas the nonlinear
method average ISS was negative at those leads
(figure 3). This is consistent with ISS beingmore sensi-
tive than deterministic skill scores like rRMSE to varia-
bility in predictive skill [54], which was more
pronounced for the nonlinear than for the linear
method.

3.2. Predictability patterns and skill scoremaps
At zero lead, the leading SST mode correlated with
SASM precipitation included warm conditions in the
eastern Tropical Pacific along with cool conditions in
the northwest and southwest Pacific (figure 4(a)). The

Figure 2. (a)Prediction skill for SouthAsiamonsoon-season precipitation, quantified as reduction in rootmean square error (rRMSE)
relative to a forecast based on climatology, for twomethods using the sea surface temperature (SST)field at different lead times as the
predictor: linear regressionwith lasso, and nonlinear random forest regression. The thick dashed lines are exponential fits to the
RMSE reduction as a function of lead time. (b) Same as (a), but with dotted lines showing 95%confidence intervals of rRMSE based on
between-year variability of the forecastmethods’mean square error, andwith the vertical axis stretched to show the confidence
ranges. The dashed–dotted lines show 95%confidence intervals when theNewey–Westmethod is used to account for autocorrelation
in the series of yearly forecast-skill differences.
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Figure 3. (a)Probabilistic prediction skill for SouthAsiamonsoon-season precipitation, quantified as information skill score (ISS)
relative to a forecast based on climatology, for twomethods using the sea surface temperature (SST)field at different lead times as the
predictor: linear regressionwith lasso, and nonlinear random forest regression. The thick dashed lines are exponential fits to the
RMSE reduction as a function of lead time. (b) Same as (a), but with dotted lines showing 95%confidence intervals of rRMSE based on
between-year variability of the forecastmethods’mean square error, andwith the vertical axis stretched to show the confidence
ranges.

Figure 4. (a) June sea surface temperaturemost closely associatedwith SouthAsiamonsoon-season (June–September) precipitation,
as found using singular value decomposition from the lasso regression. (b)The associated SouthAsiamonsoon-season precipitation
response. The numerical scalings are arbitrary.

6

Environ. Res. Lett. 14 (2019) 044006



corresponding precipitation response had an east–
west contrast over the SASM region, with wet condi-
tions in eastern and southern India along with dry
conditions in the Ganges basin (figure 4(b)). At
12 month lead, the leading SST mode showed warm
conditions along a narrower region of the Equatorial
Pacific, along with cool conditions in most of the
Atlantic (figure 5(a)). The precipitation response
showed wet conditions over most of the SASM region,
and dry ones on its southern and northwest margins
(figure 5(b)). These SST patterns are weakly correlated
with those associated with ENSO, with correlations of
around −0.2 between their time series at both lead
times and that of SOI.

To visualize what parts of South Asia show pre-
dictability for monsoon-season precipitation, the
mean rRMSE, averaged over the 0–12 month lags to
reduce fluctuations, was mapped for the linear and
nonlinear forecasts. The two methods show similar
though not identical regions with significant positive
skill, particularly over the Ganges basin and Deccan
Plateau, while forecasts had negative rRMSE (i.e. were
less effective than the climatology forecast) at some
points near the region’s eastern and southern edges
(e.g. lower Indus basin and Sri Lanka, respectively)

(figure 6). Compared with the linear forecast
(figure 6(a)), the nonlinear one (figure 6(b)) shows
more positive rRMSE on average and in the areas
where the linear forecast has skill, but also more nega-
tive rRMSE where the linear forecast has near-zero or
negative rRMSE, indicating a less consistent forecast.

4.Discussion

Skill in prediction of monsoon-season precipitation
over South Asia from the global SST field tended to
decrease with increasing lead time, as expected, but
remained consistently positive even over a year in
advance, as measured by rRMSE relative to climatol-
ogy (figure 2). This long-term predictability of pre-
cipitation could be valuable, for example, for water
resource planners. Prediction skill relative to a forecast
based on the 1901–1996 climatology was positive on
average even at the longest lead times of 4 years, due to
change in expected monsoon patterns associated with
global warming. This phenomenon of climate-
change-related seasonal to interannual prediction skill
being comparable to that achievable by considering
transient predictors is also found in seasonal forecast-
ing studies fromother regions [61–64], andmeans that

Figure 5. (a)Previous-year June sea surface temperaturemost closely associatedwith SouthAsiamonsoon-season (June–September)
precipitation, as found using singular value decomposition from the lasso regression. (b)The associated SouthAsiamonsoon-season
precipitation response. The numerical scalings are arbitrary.
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the baseline climatology period needs to be carefully
defined in order to properly compare the skillfulness
of different forecastmethods.

Both a linear forecast method (lasso) and a non-
linear method (RF) showed skill in predicting mon-
soon-season precipitation. The nonlinear method
showed higher skill on average but greater variability in
skill across years and locations. Configurations of these
methods and related ones were not evaluated exhaus-
tively, so it cannot be concluded that these are the best
possible methods or that nonlinear methods will in
general outperform linear ones. The similarity in geo-
graphic distribution between the skill score spatial
patterns (figure 6) suggests that both methods are
exploiting similar associations of precipitation with the
SST field. The sensitivity tests presented in the supple-
mental material suggest that each method may have its
own strengths—for example, the nonlinear method
appearsmore robust to the removal of the global warm-
ing component of SST evolution (figure S3 available
online at stacks.iop.org/ERL/14/044006/mmedia),

while the linear method does better when fewer SST
modes are provided as predictors (figure S2). That
detrending SSTs by removing the component linearly
correlated with SOI reduced but did not eliminate skill
(figure S3) is consistent with studies that have found
that SST and pressure patterns outside the main ENSO
region of the eastern Equatorial Pacific have become
increasingly important predictors for Indian summer
monsoon rainfall in recent decades [11, 12].

There are anumber of approaches that couldbe eval-
uated for further improvingmonsoonprecipitation fore-
cast skill. Parameters in lasso andRF, here generally left at
default values, could be systematically calibrated, as
could other factors such as the number of SST modes
used as predictors. Additional possible predictors, such
as snow cover, soil moisture patterns, and atmospheric
pressure patterns [65–70], could be added to see if their
inclusion yields improvements over only using SSTs,
particularly for shorter lead times of under a year. Predic-
tion over the South Asia domain could be compared to
predicting over smaller or larger (e.g. continental or

Figure 6.Percentage reduction in rootmean square error for forecasts ofmonsoon-season precipitation based on sea surface
temperature 0–12months before, compared to a forecast based on climatology. (a) Linear-regression forecastmodel. (b)Nonlinear-
regression forecastmodel. Cross-hatching shows areas where this reduction is not significantly different from zero at the 5%
confidence level.
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global) domains. Prediction could be based on the evol-
ution of the SST field acrossmonths, rather than only on
a single month’s field as done here. For example, [71]
found that the difference between spring and winter
values of ENSO indices was a better predictor of mon-
soon-season irrigation requirement for a district in India
than the winter or spring index values themselves, and
[72, 73] found that monsoon precipitation in Nepal
shows interannual autocorrelation and correlates with
the Pacific Quasi-Decadal Oscillation lagged 2 years.
Numerical weather predictionmodel outputs, which are
known to have skill in monsoon prediction at least over
lags of up to a few months [74], could be added as pre-
dictors in the forecastmodel.

It may be possible to improve the performance of
these probabilistic tercile forecasts by refining the
method used to derive them from the predictions of
the linear or nonlinear SST-based forecast models.
The tercile probabilities could also be predicted
directly rather than estimated indirectly from the
deterministic forecast, through for example quantile
linear regression [75] and quantile RF [45, 76–78].

5. Conclusion

By considering linear and nonlinear forecast methods
using SST modes as predictors, prediction skill for
spatially distributed monsoon-period precipitation
over South Asia was found to decay with a timescale of
5–12 months, but with residual skill at several-year
lead times due to long-term climate trends. While
these methods are not definitive and could likely be
further improved, the present findings suggest that
South Asia monsoon-period precipitation can be
predicted with longer lead time than the subseasonal
to seasonal leads usually attempted now.
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